Quantum crystal could reveal the identity of dark matter
By Adam Mann 1 day ago
Beryllium ions might help in the hunt for dark matter.
Using a quirk of quantum mechanics, researchers have created a beryllium crystal capable of detecting incredibly weak electromagnetic fields. The work could one day be used to detect hypothetical dark matter particles called axions.
The researchers created their quantum crystal by trapping 150 charged beryllium particles or ions using a system of electrodes and magnetic fields that helped overcome their natural repulsion for each other, Ana Maria Rey, an atomic physicist at JILA, a joint institute between the National Institute of Standards and Technology and the University of Colorado Boulder, told Live Science.
Related: The 18 biggest unsolved mysteries in physics
When Rey and her colleagues trapped the ions with their system of fields and electrodes, the atoms self-assembled into a flat sheet twice as thick as a human hair. This organized collective resembled a crystal that would vibrate when disturbed by some outside force.
“When you excite the atoms, they don’t move individually,” Rey said. “They move as a whole.”
When that beryllium “crystal” encountered an electromagnetic field, it moved in response, and that movement could be translated into a measurement of the field strength.
But measurements of any quantum mechanical system are subject to limits set by the Heisenberg uncertainty principle, which states that certain properties of a particle, such as its position and momentum, can’t simultaneously be known with high precision.
The team figured out a way to get around this limit with entanglement, where quantum particles’ attributes are inherently linked together.
Source: Quantum crystal could reveal the identity of dark matter | Live Science