Lab-made mouse embryos grew brains and beating hearts

Lab-made mouse embryos grew brains and beating hearts, just like the real thing

HWH Comment: What’s the point? Lab-made mouse embryos grew brains and beating hearts, just like the real thing. Next stop humans? The perfect human? Scientists have no collective conscience. They need to get one, before the world turns on them.

Synthetic mice they call them? Synthetic humans next. They used real animal cells; there’s nothing synthetic about that. No mouse was harmed? It’s unclear what scientists call harm these days. Enslavement, torture and eventual slaughter doesn’t seem to fit into their designed-to-cover-reality definition of what harm means.

Does this mean that synthetic fabric has animal hair cells as its origin?

Find a better word than ‘synthetic’. A synthetic cow is a real cow.

Does synthetic rubber mean it used real rubber cells to make it?

Regarding the scientists absent a conscience: Getting overly-complicated with your definitions causes pain and suffering. It’s a sure sign that you’re covering something that the world would frown upon.

Science is supposed to be all about accuracy. Yet the interpretations and applications suggests otherwise.

Accuracy from start to finish.

There are valid reasons why so many people don’t trust the science, and I know that you know them all, so act as such and people will accept the truth as truth. The minute you bend it, you corrupt the science.

For example, these were not lab-made embryos as if the mouse had nothing to do with it, so right there out of the box you lie to make people think you created a mouse in the laboratory. Even God can’t do that. But you did?

No, you did not. You used mouse stem cells that contain mouse DNA and everything else needed to create an embryo.

Understand? Or is that over your head, because you’re not required by law to have a conscience?


By Nicoletta Lanese published 3 days ago

The embryos survived for 8.5 days.

synthetic mouse embryo pictured next to natural embryo

Scientists made synthetic mouse embryos (left) that closely resemble natural embryos (right) during the early days of development. (Image credit: Amadei and Handford)

Scientists coaxed mouse stem cells to grow into synthetic embryos that began developing hearts and brains, just like the real thing.

The lab-made embryos, crafted without any eggs or sperm and incubated in a device that resembles a fast-spinning Ferris wheel full of tiny glass vials, survived for 8.5 days. That’s nearly half the length of a typical mouse pregnancy. In that time, a yolk sac developed around the embryos to supply nutrition, and the embryos themselves developed digestive tracts; neural tubes, or the beginnings of the central nervous system; beating hearts; and brains with well-defined subsections, including the forebrain and midbrain, the scientists reported in a study published Thursday (Aug. 25) in the journal Nature(opens in new tab).

“This has been the dream of our community for years and [a] major focus of our work for a decade, and finally, we’ve done it,” senior study author Magdalena Zernicka-Goetz, a developmental and stem-cell biologist with labs at the University of Cambridge, UK, and the California Institute of Technology in Pasadena, said in a statement.  

The new work produced very similar results as an earlier study, published Aug. 1 in the journal Cell, which was led by Jacob Hanna, an embryonic stem cell biologist at the Weizmann Institute of Science in Israel and co-author of the new Nature paper. In their recent Cell study, Hanna’s team used different starting stem cells but the same incubator to culture synthetic mouse embryos for 8.5 days. Those embryos also grew digestive tracts, beating hearts, and tiny, wrinkled brains before ultimately dying, Live Science previously reported

Related: ‘First complete models’ of a human embryo made in the lab 

Although the two recent studies produced similar embryos, the experiments started out slightly differently. In the Cell study, the researchers started by coaxing mouse stem cells into a naive state from which they could morph into any cell type, such as heart, brain or gut cells. From there, the team divided these naive cells into three groups. In one group, they switched on genes to form the placenta, and in another group, they switched on genes to make the yolk sac. The last group they left alone to develop into embryos.

Zernicka-Goetz’s research group, on the other hand, began with three mouse stem cell types, rather than starting with only naive cells. One type of stem cell gave rise to the embryo, while the other two morphed into the placental tissues and yolk sac. Throughout the experiment, they observed how these three stem cell types interacted, exchanging chemical messages and physically butting up against each other in the glass vials.

Studying such exchanges could give hints as to how the earliest stages of embryonic development unfold in humans — and what happens when things go awry. 

“This period of human life is so mysterious, so to be able to see how it happens in a dish — to have access to these individual stem cells, to understand why so many pregnancies fail and how we might be able to prevent that from happening — is quite special,” Zernicka-Goetz said. “We looked at the dialogue that has to happen between the different types of stem cell at that time — we’ve shown how it occurs and how it can go wrong.”


How long can human embryos stay frozen?

Impeccably preserved dinosaur embryo looks as if it ‘died yesterday’

Part-human, part-monkey embryos grown in lab dishes 

In both the Cell and Nature studies, the resulting synthetic embryos closely resembled natural embryos, albeit with some slight differences and defects in how the tissues self-organized. However, in both experiments, a very low proportion of the stem cells actually gave rise to embryos, suggesting that the efficiency of both systems could be improved. In addition, neither set of synthetic embryos survived to the ninth day of development — an obstacle that would need to be overcome in follow-up studies. 

“The reason for the block in further development is unclear but might relate to the defects in the formation of some of the placental cell types that the authors report,” James Briscoe, a principal group leader and assistant research director at the Francis Crick Institute in the U.K. who was not involved in either study, told the Science Media Centre(opens in new tab), a U.K.-based press office that works with researchers, journalists and policymakers to disseminate accurate scientific information. 

The research also raises ethical questions about if and how such technology might be applied to human cells in the future.

Originally published on Live Science.


Published by Sharon Lee Davies-Tight, artist, writer/author, animal-free chef, activist

CHEF DAVIES-TIGHT™. AFC Private Reserve™. THE ANIMAL-FREE CHEF™. The Animal-Free Chef Prime Content™. ANIMAL-FREE SOUS-CHEF™. Animal-Free Sous-Chef Prime Content™. ANIMAL-FAT-FREE CHEF™. Fat-Free Chef Prime Content™. AFC GLOBAL PLANTS™. THE TOOTHLESS CHEF™. WORD WARRIOR DAVIES-TIGHT™. Word Warrior Premium Content™. HAPPY WHITE HORSE™. Happy White Horse Premium Content™. SHARON ON THE NEWS™. SHARON'S FAMOUS LITTLE BOOKS™. SHARON'S BOOK OF PROSE™. CHALLENGED BY HANDICAP™. BIRTH OF A SEED™. LOCAL UNION 141™. Till now and forever © Sharon Lee Davies-Tight, Artist, Author, Animal-Free Chef, Activist. ARCHITECT of 5 PRINCIPLES TO A BETTER LIFE™ & MAINSTREAM ANIMAL-FREE CUISINE™.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: